

Implementation of HMAC-PHOTON Lightweight Cryptography with Low-Power Consumption and Area Optimization

Kang-Un Choi, Duc Nhan Le, Seungbum Baek and Jong-Phil Hong, Member, IEEE School of Electrical Engineering, Chungbuk National University, Republic of Korea

Implement HMAC lightweight PHOTON-80

- 128-bit message, 128-bit key
- \rightarrow For typical application

GRATE

		HMAC-PHOTON 80 (this work)	HMAC-PHOTON 80 (conventional)	HMAC- SHA 256	HMAC- SHA 1 [1]
Parame -ter	Message (bits)	128	128	128	32
	Key size (bits)	128	128	128	32
	Hash size (bits)	80	80	256	160
Perfor- mance	Latency (clk)	880	880	320	20.2-25.3
	Frequency (MHz)	100	100	100	66
	Throughput ¹ (Mbps)	14.5	14.5	40	83.4-104.3
	Area (GEs)	20698	35423	41681	29200
	Power (mW)	2.62	3.57	10.6	-
	Process	65 nm	65 nm	65 nm	250 nm
Security	Entropy (bits per byte)	3.296	3.296	4.873	-
	Avalanche effect (%)	50.40	50.40	49.53	-
	Collision resistance (bits)	40	40	128 [2]	< 80 [2]
	Preimage resistance (bits)	80	80	256 [2]	160 [2]
	Second preimage resistance (bits)	40	40	201-224 [2]	105-160 [2]

00-107, August 2012.

3] K. A. McKay *et al.*, National Institute of Standards and Technology, "Report on Lightweight Cryptography", NISTIR 8114, March 2017.

Table II: Power and area comparison of HMAC-PHOTON 80 (proposed and c onventional design), HMAC-SHA 256 and HMAC-SHA 1

Table I: Performance and security comparison of HMAC-PHOTON 80 (proposed and conventional design), HMAC-S HA 256 and HMAC-SHA 1

- x frequency

bits of data *input*

latency

^{[1].} Throughput =

Acknowledgment

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07042607). The chip fabrication and EDA tool were supported by the IC Design Education Center(IDEC), Korea.

